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Self-consistent theory of spin-phonon interactions in 
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Abstract A Green function technique is used to study the effects of spin-phonon interactions 
in femmagnetic semimnduclors. The spin wave energy and the m s v e  damping for WO 
different spin-phonon interaction mechanisms are evaluated for the first time beyond lhe w.4. 
The results are valid below and above T,. The temperature dependence of these quantities is 
discussed. and is found to be in agreement with the experimental data. 

1. Introduction 

In recent years, elementary excitations of the lattice and spin systems of solids, i.e. 
phonons and magnons, respectively, have been the subject of extensive investigations by 
means of light scattering (Guntherodt and Zeyher [ I ] ,  Wakamura and Arai [2]). A new 
'degree of freedom' is added to the usual phonon Raman scattering (RS) in solids by 
investigating magnetically ordered materials, in particular, ferromagnetic semiconductors 
(FMS) which exhibit interactions between the phonon and spin systems. Investigations in 
this direction have been. addressed to magnetic and semiconducting Cd-Cr spinels. the 
europium chalcogenides and magnetic insulators such as VIZ. 

The spin-phonon interaction in FMS has not, theoretically, been so intensively studied. 
Suzuki and Kamimura [3] developed within the molecular-field approximation (MFA) a 
theory of phonon RS in magnetic crystals, and Suzuki [4] applied it to phonon RS in europium 
sulphide. Inelastic light scattering from non-zone-centn? phonons in the magnetic phases of 
the europium chalcogenides is interpreted by Safran etnl [5] in terms of two-spin correlation 
functions. Ousaka er 41 [6,7] studied the spin-assisted phonon RS in EuTe and concluded 
that the 5d spin-orbital interaction modulated by the lattice displacement is dominant in 
the RS process of EuTe. However, the experimental results of Giintherodt and Zeyher [I]  
do not confirm the conclusions of these model calculations. Wesselinowa [SI discussed the 
inffuence of the spin-phonon interaction on the spin polarizability, i.e. on the longitudinal 
damping y2'(k) and on the dynamic structure factor S"(k, E), for FMS using a Green 
function technique for the first time beyond the random phase approximation (RPA). The 
theoretical results were applied to CdCrZSy [SI and to EuS [9]. The effects of the magnetic 
ordering on the phonon specmm and on the phonon damping in FMS were studied in [IO]. 

The aim of the present paper is to observe the spin wave energies of FMS beyond the 
RPA including the spin-phonon interaction. 
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2. Model and method 

It is known that ferromagnetic semiconductors are well described by the so-called s-f model 
[ l l ] .  The Hamiltonian of the system may be written as 

J M Wesselinowu and A T Apostolov 

H = Hm + He + Hme + H p +  Hmp. (1) 

H, is the Heisenberg Hamiltonian for the ferromagnetically ordered f electrons: 

H, represents the usual Hamiltonian of the conduction band electrons: 

where v(q)  is the Coulomb interaction, U = &l. 

interaction: 
The operator H,, couples the two subsystems (2) and (3) by an intra-atomic exchange 

where I is the constant interaction energy. 
H p  represents the usual Hamiltonian of the lattice vibrations: 

where Qq, Pq and oq are the normal coordinate, momentum and frequency of the lattice 
mode with wave-vector q,  respectively. The vibrational normal coordinate Q,  and the 
momentum Pq can be expressed in terms of phonon creation and annihilation operators: 
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The acoustic phonons are coupled to the ferromagnetic system via the constant 

;(ep-' h)J'(h)(exp(ip h) + exp(iq h)) 
1 1 

&, 9) = 5 

F@, 9) = F @ ,  9 ) / ( b p - q ) l ' 2 .  

The summation extends over the vector ri - rj = h connecting all possible pairs of spin 
sites in the crystal, and e, is the polarization of the phonon with wavenumber p. 

The retarded Green function to be calculated is defined in matrix form as 

c k ( f )  = -ie(t)([Bk(t). Bl l ) .  (7) 

The operator Bk stands symbolically for the set S l ,  cpc&k+cp-.  For the approximate 
calculation of the Green function (7) we use a method proposed by Tserkovnikov [121, which 
is appropriate for spin problems. After a formal integration of the equation of motion for 
the Green function one obtains 

= -ie(t)([Bk, B Z ] )  exp(-iEk(t)t) 

where 

with the notation jk = [ B k .  Hint]. The time-independent term 

t k  = ( [ [ B k ,  HI, B:I)/(I&, @I) (9) 

gives the spin wave energy in the generalized Hartree-Fock approximation. The time- 
dependent term includes the damping effects. 

3. The spin wave energy 

We obtain from (9) for the spin wave energy in the generalized Hartree-Fock approximation 

El/Z(k) = 0.5 [cl! f €22 * J(€II  - €U)' f 4€12€21 1 (10) 

with 
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where 

The matrix elements ~ i j ( k )  of the spin wave energy below T, are in the RPA, where we 
have neglected the transverse correlation functions (S;SJ) and decoupled the longitudinal 
correlation functions (Sp:,) -+ (Sz)28qo, 

€22 = 2PBH + I(S') 
where 

J e f f  = Jo + A J ,  
AJ,, = l im(~ ,Z(~' ) /2o~) .  

,?+o 

Therefore the spin-phonon interaction causes below Tc a renormalization of the spin-spin 
interaction constant JO Jew, which is now temperature dependent. Above T, AJ, is 
zero. 

p is the conduction-electron magnetization and is given by 

where n+ and n-  are the numbers of conduction electrons in the spin-up and spin-down 
bands, respectively. For the calculation of p we must define a one-electron Green function 
by C,(k) = ((cb; cf,)). The electron energy is obtained as 

€ w ( k )  €k  - -U(PBH +0.51(Sz)) + X [ U ( o )  - U(k - k')&o'](Ck,,Ck,g')  (14) 
k ' .d  
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Figure 1. Temperahrre dependence of the spin wave energy El for EuO (-)and E2 for EuS 
(- - -) for different spin-phonon interaction constants: A, F = 0, E .  0.2 e t  C. 0.5 eV. 

where ck is the conduction band energy in the paramagnetic state and f i  is the chemical 
potential. For a simple cubic lattice and next-neighbour interaction ~k is equal to 

W 
3 

ek = --(cos k,a + cos k,a + cos k,a) 

where W is the conduction band width. For the correlation function we have 

(CicCqu) = l/[exP(cqu/kBT) f 11. 

The electron polarization p is maximum for W = 0 [13]. 
For the localized-spin magnetization (Sz) we obtain 

where Ek = El(k), B = 1 fkBT. (S') is maximum for W = 0. With increasing W, (S') 
and T, decrease. If W is constant and I increases, then T, increases too [13]. 

The spin wave energy Ek = El(k) was calculated numerically taking parameters for 

J' fks  = 0.15 K, H = 0, k = 0.2rr, 0 . 2 ~ .  0 . 2 ~ )  and for EuS (I = 0.2 eV, 

k = 0.2n, 0.27r, 0 . 2 ~ )  for different temperature T, spin-phonon interaction constant 
F = F(q)  and Coulomb interaction U (U 0.5u(q)) values. J and J' are the spin- 
spin interaction constants between nearest and next-nearest neighbours, respectively. For 
the numerical calculations the following approximations are used (S&) = (SZ)*6,o, 

(S-) (c:+cq-) = 0. The results for U = 0.1 eV are demonstrated in figures 1 and 2. The 
spin wave energy E(k) increases with U and F. 

EuO I l l ,  14,151 ( I  = 0.2 eV, S = 7 / 2 ,  W = 2 eV. T, = 69.5 K, J / k B  = 0.55 K, 

S = 112, W = 0.9 eV, Tc = 16.5 K, JfkB = 0.22 K, J'fks = -0.10 K, H = 0, 

(S&c:-Cq-) = (Sz)(c~-cq-)Spq, (S&:-cq+) = (S+)(ci-c,+) = 0 and (S; -q~q+~p- )  + = 
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Figure 2. Temperalure dependence ofthe ratio E1 / E ?  ( E l  for Ea0 and E2 for €US) for different 
spin-phonon interaction c o ~ m l s :  A. F = 0; B .  0.2 eV; C. 0.5 eV. 

At low temperatures the difference between the spin wave energies of EuO and EuS is 
very small. It grows with increasing T and increasing spin-phonon interaction F. So we 
have found that for T < T, the spin wave energies in EuS are small compared with EuO for 
F = 0.5 eV and T = O.W, Ek in EuS is smaller by about a factor of three compared with 
EuO. Above T, the spin wave energies decmse very slowly-they are nearly temperature 
independent. The results are in very good agreement with the experimental data of EuO 
and EuS [14,16]. It is concluded that the spin-phonon interaction must be considered in 
order to obtain correct results in FMS in accordance with [9]. 

4. The damping 

In order to obtain the spin wave damping caused by the spin-phonon interaction we consider 
approximately the integral term in (8). In our calculations we use the approximate dynamics 
&(t)  E Skexp(-iEkt), cko(f) = cbexp(-icbt)  and a&) = akexp(-iwkt) where Ek 
and E h  are from (10) and (14). respectively, and UJk = uk. This assumption takes the 
generalized Hartree-Fock approximation as a starting approximation. 

Calculations yield the following expression for the transverse damping yk: 

y ( k )  = ~ s ( k )  + Kdk) + Y&). (16) 
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ys is the damping which comes from the interaction between the ferromagnetically 
ordered and the conduction band electrons 

where 

e to the spin-phonon 
interaction provided the 8-function can be satisfied. Then yk increases with increasing 
temperature T. 

At temperatures close, but less than T, the parts from the s-f and spin-phonon interaction 
predominate over this due to the spinapin interaction. Therefore we have 



+ ( f i q - k  - i q ) & ( E q  + Wq-k - Ed1 (26) 

with i ,  from (18) and E, from (IO) with ( S I )  + 0. 
For k = 0 is the term yss which comes from the spin-spin interaction zero; only 

the terms due to the s-f and spin-phonon interactions give contribution to the transverse 
damping. 

For small k-values we have 

 ss << ~ s p  << Y..f k 2: 0. (27) 

So the spin-phonon interaction gives the main contribution to the damping at temperatures 
T 2 Tc and for small wave vector k and must be taken into account if we want to obtain 
correct results. 

The numerical calculations of the damping are in preparation and will be published 
elsewhere. 

5. Another interaction mechanism 

The calculations presented here could be extended to include other mechanisms giving 
interactions between spin waves and phonons. For example, it would be useful to consider 
the effects of spin-phonon coupling due to modulation of the crystalline field (the single-ion 
magnetostriction mechanism). This can give an interaction Hamiltonian which is linear in 
the phonon operators and quadratic in the spin operators: 

We define the same Green function (7) as in section 2, and use the same method applied 
there. 

The transverse spin wave energy El, is obtained as in (IO) but with the following €11: 

€ 1 1  RPBH + (I/2(SZ)N) r(Jq - &-q)W&) -k (S;S:)) 
9 

+ AJsp(s') + (I/N2)C((S&$+cq-) + (S&.,C&C,+) - (Si-pC&Cq-)) .  

(29) 
9.P 

In the RPA c l  I is then equal to 

€ 1 1  = j i l l g H + ( S ' ) ( J , a - J k ) + I ~ .  (30) 
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The spin-phonon interaction causes a renormalization of the spin-spin interaction constant 
JO + J ~ R  

Jeff = Jo + AJsp 
AJ,, = $ 5 ( 2 F i 2 / o q ) .  

Calculations yield the following expression for yk: 

yk = (T/N) F$.(l-+ @q + i i k -q )S(Ek-q  - ~q - E d  
P 

with yss and ysf from (17) and (19). respectively. 

yk(T = 0)  = ( T / N )  

At T = 0 this simplifies to 

F$(Ek-q - Wq - Eh). ( 3 3 )  
9 

Hence the spin waves may be damped at zero temperature, provided the delta function in 
( 3 3 )  can be satisfied. 

At T = T the transverse damping ys which arises from the spinspin interaction 
vanishes, whereas the damping due to the s-f and spin-phonon interaction remains finite. 
For T > T, we have 

f i ( T  > T) = (n/N) F$(1 + Sq + iik-q)N&-q - Wq - E d  
9 

+ ( N q  - i k - q ) W k - q  + wq - Ed1 + Ysr (34) 

with ysf from (25). ii, and 13, from (18) with Eq from (29)  ((S') --f 0) and from (21) ,  
respectively. 

In the case of the first spin-phonon mechanism (6) the damping for T 2 T, is due to 
the s-f and spin-phonon interactions, too. 

6. Conclusions 

In the present paper a self-consistent theory of the spin-phonon interaction in a ferromagnetic 
semiconductor was developed. The renormalized spin wave energy is obtained. The spin- 
phonon interaction causes a renormalization of the spin-spin interaction constant Jo + Jeff. 
which is now temperature dependent. Above Tc we have AJ,, = 0. The damping is very 
small at low temperatures, but finite for T = 0. Then it increases with increasing of T. At 
T = T and above T, only the damping due to the s-f and spin-phonon interactions remains 
finite. For k = 0, ysp = xys = 0, whereas ysf contributes to the transverse damping. 

In the last section we consider an interaction Hamiltonian which is linear in the phonon 
operators and quadratic in the spin operators. The spin-phonon interaction causes a 
renormalization of the spin-spin interaction constant Jo. At zem temperature the spin 
waves are renormalized and may be damped provided the delta function can be satisfied. 
For T 2 Te only ysf and yv remain finite. Results of the numerical calculations of the 
obtained expressions will be published elsewhere. It may be concluded that the spin-phonon 
interaction plays an important role and must be considered in order to obtain correct results 
in ferromagnetic semiconductors. 
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